Mark scheme - Alkanes

Question		Answer/Indicative content	Marks	Guidance
1	i	Initiation $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$ AND UV \checkmark Propagation $\begin{aligned} & \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl} \cdot \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{HCl} \checkmark \\ & \mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl} \cdot \checkmark \end{aligned}$	$\begin{gathered} 3 \\ (\mathrm{AO} 1.1) \\ \\ (\mathrm{AO} 2.5) \\ (\mathrm{AO} 2.5) \end{gathered}$	Dots NOT required for initiation IGNORE temperature OR pressure Dots required in each propagation equation ALLOW 1 mark for BOTH propagation equations with any dots missing or extra dots e.g. $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{HCl}$ $\mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{Cl}_{2} \bullet \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl}$ DO NOT ALLOW charges Examiner's Comments A minority of Many candidates scored all 3 marks for this part, showing that most had thoroughly learnt the mechanism for radical substitution. The equation and conditions for the initiation step were well-known but the equations for the propagation steps often included errors. It was common for dots to be omitted for some radicals and $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl} \cdot$, rather than $\mathrm{C}_{4} \mathrm{H}_{9} \cdot$, was often shown for one of the products in the first propagation stage. $\mathrm{H} \cdot$ was then shown as the other product.
	ii	$\mathrm{C}_{4} \mathrm{H}_{10}+10 \mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{Cl}_{10}+10 \mathrm{HCl} \checkmark$	1 (AO2.6)	ALLOW structural formulae, e.g. $\begin{aligned} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} & +10 \mathrm{Cl}_{2} \\ & \rightarrow \mathrm{CCl}_{3} \mathrm{CCl}_{2} \mathrm{CCl}_{2} \mathrm{CCl}_{3}+10 \mathrm{HCl} \end{aligned}$ Examiner's Comments Only the highest attaining candidates were able to write the correct equation. Although most candidates did identify the organic product as $\mathrm{C}_{4} \mathrm{Cl}_{10}$, the other product was usually seen as $5 \mathrm{H}_{2}$ rather than 10 HCl .
	iii	$\begin{aligned} & n(\mathbf{E})=\frac{78.0}{32500}=2.4(0) \times 10^{-3}(\mathrm{~mol}) \\ & M(E)=\frac{0.636}{2.4(0) \times 10^{-3}} \text { OR } 265 \end{aligned}$ Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Cl}_{6} \checkmark$	$\begin{gathered} 3 \\ (\mathrm{AO} 3.1 \times 2) \\ (\mathrm{AO} 3.2) \end{gathered}$	ALLOW ECF from incorrect $n(\mathbf{E})$ ALLOW ECF from incorrect $M(\mathbf{E})$ from $n(\mathbf{E})$

		Boiling point and branching: 1 mark Boiling point decreases with more branching OR more methyl/alkyl groups/side chains OR shorter carbon chain \checkmark Branching and London forces: 1 mark Could be seen anywhere within response More branching gives less (surface) contact AND fewer/weaker London forces \checkmark Energy and intermolecular forces: Less energy to break London forces/ intermolecular forces/intermolecular bonds/ \downarrow		Comparisons needed throughout ORA throughout ALLOW comparison between any alcohols, e.g. A is least branched and has highest b pt \mathbf{C} is most branched and has lowest b pt ALLOW induced dipole(-dipole) interactions IGNORE van der Waals'/vdw forces ALLOW SA for surface area ALLOW 'harder to overcome intermolecular forces ALLOW more energy to separate the molecules IGNORE just 'bonds' intermolecular/London forces required Examiner's Comments This question discriminated well and resulted in a full range of marks. Most candidates were aware that structural isomers have different structural formulae but the same molecular formulae. It was common though for candidates to refer to different arrangements of atoms in space, clearly confusing with stereoisomerism. The best candidates used the structures (as in the question) to show that the common molecular formula was C 5 H 12 . Candidates were expected to link the amount of surface contact between molecules with induced dipole-dipole forces or London forces. 'Contact' or the name of the intermolecular forces was often omitted. Finally, candidates were expected to link the amount of branching to the strength of the intermolecular forces and the energy needed to change state. Lower ability candidates often let themselves down by being unable to construct a well-reasoned response. There was often a gulf between the clear responses of able candidates and those of lower ability candidates.
	$\text { b } \quad \text { i }$	Radical substitution \checkmark	1	ALLOW Free radical substitution Examiner's Comments Most candidates identified this reaction as radical substitution.

				Total	

		v		1	Dot shown in correct position ALLOW -OH Examiner's Comments Unfortunately, candidates who were not able to attempt equations for the propagation steps in part (iv) were then unable to suggest the structure of the radical formed in the first step. Many candidates did not present a fully displayed formula. However, formulae showing -OH were given credit in this question.
		vi	Any structure with two or more Cl atoms on alkyl chain (provided that one Cl is at $\mathrm{C}-2$)	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above DO NOT ALLOW $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$ ALLOW further substitution into any or all of the 4 positions occupied by H atoms in the alkyl group, provided that at least one Cl is at C-2 Examiner's Comment: Generally well answered but it was clear from some of the structures drawn that some candidates did not understand what is meant by further substitution.
			Total	7	
4			Alcohols have hydrogen bonds (and van der Waals' forces) \checkmark Hydrogen bonds are stronger than van der Waals' forces (in alkanes) \checkmark	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW reference to specific compounds e.g. comparing methane and methanol Second marking point requires BOTH types of intermolecular forces in response i.e comparison of hydrogen bonds AND van der Waals is essential DO NOT ALLOW the second mark for a comparison of van der Waals' and hydrogen bonds between alcohols and water ALLOW more energy required to break hydrogen bonds than van der Waals' forces

		Two correct \checkmark All three correct $\checkmark \checkmark$		This question required candidates to apply their knowledge of the radical substitution mechanism and those who had prepared well scored full marks. A common misconception was to have hydrogen radicals being formed and reacted in propagation and termination steps.
		The breaking of a ($\mathrm{Br}-\mathrm{Br}$) bond AND forms (two) radicals OR the breaking of a ($\mathrm{Br}-\mathrm{Br}$) bond AND one electron (from the bond pair) goes to each atom / bromine \checkmark	1	ALLOW 'the breaking of a covalent bond' ALLOW the splitting of the bond in bromine ALLOW the breaking of a covalent bond where each atom keeps one of the bonding electrons IGNORE particle for atom ALLOW one electron goes to each product / species DO NOT ALLOW molecule or compound for atom IGNORE homolytic fission equations Examiner's Comments This question was better attempted than in previous sessions. Although many candidates were able to identify that radicals were formed, a significant number did not refer to the breaking of the covalent bond in Br_{2}.
d	$\text { d } \quad \text { i }$	i $\quad \mathrm{C}_{6} \mathrm{H}_{12}+2 \mathrm{Br}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}+2 \mathrm{HBr} \checkmark$	1	ALLOW molecular formula only. Examiner's Comments This question proved quite difficult for the vast majority of candidates who failed to apply their knowledge of radical substitution to an unfamiliar example. The most common incorrect answer was $\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{Br}_{2} \rightarrow$ $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}+\mathrm{H}_{2}$.
	ii	1,1-dibromocyclohexane OR 1,2-dibromocyclohexane OR 1,3-dibromocyclohexane OR 1,4-dibromocyclohexane \checkmark	1	Locant numbers MUST lowest possible e.g. DO NOT ALLOW 2,4-dibromocyclohexane etc. IGNORE structures Examiner's Comments Candidates were required to name one of the dibromocyclohexane compounds that could be formed from cyclohexane and the more able candidates were able to apply their understanding of nomenclature successfully. Common incorrect responses included straight chain dibromo compounds e.g. 1,2-dibromohexane and incorrect use

				of locant numbers e.g. 2,3dribromocyclohexane.
		Total	15	
7	i	any mono or multiple substituted chlorohexane - e.g.	1	
	ii	(because) substitution can replace any H atom / multiple substitution owtte (1)	1	ignore vague statements about free radical reactions being random allow termination can join alkyl radicals to form larger hydrocarbons owtte
		Total	2	
8	i	CO is toxic	1	allow responses linked to effect of CO in blood
	ii	Calculation: n (butane) $=600 / 58.0=10.34(\mathrm{~mol})$ AND $n\left(\mathrm{O}_{2}\right)$ required $=6.5 \times 10.34=67.2$ (mol) (1) $n\left(\mathrm{O}_{2}\right)$ consumed $=1.50 \times 10^{3} / 24.0=62.5$ (mol) OR volume O_{2} required for complete combustion $=67.2 \times 24.0 / 1000=1.61 \mathrm{~m}^{3}$ (1) Conclusion: incomplete combustion / stove not safe to use AND 62.5 < 67.2 OR 1.61 > 1.50 (1)	3	using $1: 6.5$ ratio allow number rounding to 67
		Total	4	
9	i	Overlap of orbitals directly between the bonding atoms	1	allow a correct diagram
	ii	120° AND trigonal planar	1	allow planar triangle
		Total	2	
10		Initiation $\begin{equation*} \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot \tag{1} \end{equation*}$ Propagation $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl} \cdot \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \cdot+\mathrm{HCl}(1) \\ & \mathrm{C}_{2} \mathrm{H}_{5} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Cl} \cdot(1) \end{aligned}$ Termination $\mathrm{Cl} \cdot \mathrm{Cl} \cdot \rightarrow \mathrm{C} / 2$	5	If the structure of the ethyl radical is drawn, the lone electron must be attached to a C atom

| | | OR
 $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{Cl} \cdot \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CI}$
 OR
 $\mathrm{C}_{2} \mathrm{H}_{5} \cdot+\mathrm{C}_{2} \mathrm{H}_{5} \cdot \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}(1)$
 Initiation, propagation, termination used in
 correct context (1) | |
| :--- | :--- | :--- | :--- | :--- |
| | Total | 5 | |

